skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Chun-Hung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 15, 2025
  2. null (Ed.)
    In a wireless network with dynamic spectrum sharing, tracking temporal spectrum holes across a wide spectrum band is a challenging task. We consider a scenario in which the spectrum is divided into a large number of bands or channels, each of which has the potential to provide dynamic spectrum access opportunities. The occupancy times of each band by primary users are generally non-exponentially distributed. We develop an approach to determine and parameterize a small selected subset of the bands with good spectrum access opportunities, using limited computational resources under noisy measurements. We model the noisy measurements of the received signal in each band as a bivariate Markov modulated Gaussian process, which can be viewed as a continuous-time bivariate Markov chain observed through Gaussian noise. The underlying bivariate Markov process allows for the characterization of non-exponentially distributed state sojourn times. The proposed scheme combines an online expectation-maximization algorithm for parameter estimation with a computing budget allocation algorithm. Observation time is allocated across the bands to determine the subset of G out of G frequency bands with the largest mean idle times for dynamic spectrum access and at the same time to obtain accurate parameter estimates for this subset of bands. Our simulation results show that when channel holding times are non-exponential, the proposed scheme achieves a substantial improvement in the probability of correct selection of the best subset of bands compared to an approach based on a (univariate) Markov modulated Gaussian process model. 
    more » « less
  3. null (Ed.)
  4. Real-time decision making has acquired increasing interest as a means to efficiently operating complex systems. The main challenge in achieving real-time decision making is to understand how to develop next generation optimization procedures that can work efficiently using: (i) real data coming from a large complex dynamical system, (ii) simulation models available that reproduce the system dynamics. While this paper focuses on a different problem with respect to the literature in RL, the methods proposed in this paper can be used as a support in a sequential setting as well. The result of this work is the new Generalized Ordinal Learning Framework (GOLF) that utilizes simulated data interpreting them as low accuracy information to be intelligently collected offline and utilized online once the scenario is revealed to the user. GOLF supports real-time decision making on complex dynamical systems once a specific scenario is realized. We show preliminary results of the proposed techniques that motivate the authors in further pursuing the presented ideas. 
    more » « less